

NOAA Meteotsunami Project

Paul Whitmore NOAA/NWS West Coast/Alaska Tsunami Warning Center October, 2011

WCATWC in Palmer, Alaska ???Site of next meteotsunami project meeting???

Recent meteotsunami?

NOAA

Southwest Australia September 16, 2011

Project Motivation October 28, 2008 Boothbay, Maine

October 28, 2008 Boothbay, Maine surprise event

- All indications point to meteorological origin
 - Other probable east coast meteotsunamis were recorded in 1994 (Maine) and 1992 (Florida)
- NWS Alaska Region Can't we do something about these things?

- September 2009 NOAA Tsunami Program meeting: the meteotsunami threat to US east coast discussed
 - Cited as a larger threat than traditional tsunami.
- Meteotsunami warning development in the Mediterranean region
- Decision made to invest in meteotsunami warning system development project

Project History 2010 Grant RFP

- Announcement for Federal Funding Opportunity issued July, 2010
 - No proposals received.
- Announcement scaled back and reissued January, 2011.
- Successful applicants led by PI Vilibic announced August, 2011

Project Deliverables Objective 1 of 3

- Identify causative forces and precursor environmental conditions conducive to meteotsunami formation.
 - Meteorological conditions
 - Bathymetric conditions
 - Use the conditions to explain historic meteotsunamis
 - Explain basic relations used to forecast timing and impact based on causative factors

Project Deliverables Objective 2 of 3

 Define observational and processing systems needed to forecast events.

- Observational data necessary
 - Existing
 - New
- Communications of data to a warning center
 - Latency
 - Bandwidth
- Design processing to ingest and forecast
- Work with appropriate NWS facilities

- Develop warning protocol for US
 - Define necessary environmental measurements
 - Develop warning procedures/protocols
 - Provide design case for historic event
 - Work with NWS facilities to determine operational constraints

U.S. Department of Commerce National Oceanic & Atmospheric Administration

National Geophysical Data Center (NGDC)

Paula Dunbar and George Mungov

http://ngdc.noaa.gov/hazards

Natural Hazards Data

- Global historical event databases
 - Tsunami event & runup databases
 - Earthquakes & Volcanic eruption databases
 - Includes damage, deaths, \$
- Tsunami Deposits
- Tsunami References
- Damage Photos
- DART ® BPR data
 - Codes developed to extract tsunami signals
- High resolution tide gauge data
- Web Map, Feature, KMZ data delivery

http://ngdc.noaa.gov/hazard

Historical Tsunami Database

- Tsunami Source Event
 - Date/time, location, magnitude, validity, max water height, deaths, damage, references
- Tsunami Runups
 - Type of measurement, water heights, inundation distance, arrival times, wave periods, first motion, deaths, damage, references
- Variety of Data Sources
 - Tide gauge observations, deep ocean sensors, tsunami warning centers, field surveys, eyewitness accounts, journal articles, data catalogs, newspapers, etc.
- Tsunami Event Validities
 - High (validity3-4) recorded on seismograph and tide gauge, prior to instrumental records reported by many reliable and independent sources, many reports of deaths, damage and observations of waves in many locations
 - Low (validity 1-2) prior to instrumental recordings, described by only source, reported to be earthquake-caused, but not listed in local earthquake catalogs, possibly meteorologically caused
 - Seiche or river disturbance (validity 0)
 - Erroneous (validity -1)

Distribution of Global Tsunamis

• 2,120 Tsunami Source Events

Pacific Ocean

- Mediterranean and Black Sea
- Atlantic Ocean and Caribbean Sea
- Indian Ocean

20%

21,208 Tsunami Runups

(27% from 2011 Tohoku, 5% from 2004 Sumatra)

73%

Distribution of Meteotsunamis

Global

Pacific Ocean

Mediterranean and Black Sea

Atlantic Ocean and Caribbean Sea

United States and Territories

West Coast

Hawaii, American Samoa

East Coast U.S.

Alaska

U.S. Virgin Islands

🕃 Tsuziami Events Full Search, surt by																			
1909	9	20	П			-1				1	USA	LOUISIANA: GRAND ISLE				1			
1910	11	21	12	45		-1				<u>*</u>	USA	SAN PRANCISCO, CA			.30	1		-1.50	-
1915	ż	11				1				<u>.</u>	USA TERRITORY	MARUA ISLANDS, AMERICAN SAMOA	-14,210	-169,588	2.40	1			
1921	12	16				-1	.9			÷.	UEA	HAWAII			Charles .	1			-
1923	2	17				4				<u>.</u>	CHILE	CENTRAL CHELE	-35,300	-72.420	1,50	1	.60	1.50	
1923	3	4				1	9			*	U1A	R. CALIFORNIA			6.10	1			
1924	5	30				-1	9		Yol	<u>.</u>	USA	HAWAII			5,00	2	2.30	2.00	
1925	1	11			-	-1	.9			<u>.</u>	ETALY	CALABRIAN ARC							
1925	10	. 4	16			1	9				USA	CALIFORNIA			,34	2		-1.00	
1925	12	22				1	9			2	MICROHESIA, FED. STATES OF	CAROLINE ISLANDS, VAP ISLAND	10.000	138,000		1			-
1926	3	31				-1	9			:	COOK ISLANDS	COOK ISLANDS			1	1		2.50	-
1927	1	1	0	17	1	1	9	3.2		1	USA	CALIFORNIA	32.500	-115.500		1		1.00	
1928	. 9	13				-1	. 9			<u>*</u>	VENEZUELA	CARUPANO				1			-
1929	8	. 9				1	9			÷.	CHELE	ANTOFAGASTA	-23.700	-70.400	7,50	0	2.00		1
1931	ė	19				1	9			-	USA	ATLANTIC CITY, NJ	39.350	+74.417	3.00	1			
1992	5	7				-1	9			<u>*</u>	[TALY	CALABRIAN ARC							
932	11	10				-1	9.	2		*	USA	WILLETTS POINT, NEW YORK			5,40	1			
933	3	11	1	54	7.0	0	9	6.3		2	USA	S. CALIFORNIA	33.616	+117.966	.10	z	-3.90		
1984	8	21				0	9			-	USA	8. CALIFORNIA	33.700	-118.200	12.00			3.00	
1935	11	21	11	41.		1	9			2	USA	HAWAII	19.500	+155.500		1		2.00	
938	9	21				1	9			*	USA	NEW JERSEY COAST	89,950	-74.120	11	1			
1944	9	14				1	9			1	USA	NEW JERSEY COAST	10,933	-74.900	1	1			
947	1					-1	9			÷	L/SA	HAWAII							
1953	5	- 6				0	9				USA	LAKE HUROH, NS	43.500	-92.400	1.52	3			
1054	6	26				0	ų.			1	USA	MICHIGAN CITY, IN (LAKE MICHIGAN)	41.700	-04.002	3.00	3			
1997	11	1	5	0	1	-1				<u>.</u>	USA	HAWAIL			10	3		-3.00	
1.988	4	3.0		-	-	-1	9	-		*	USA	S. CALIFORNIA				1			-
1991	5	7				1				:	GREECE	EAST AFGEAN SEA	37.133	26.833	,50		-3.30		
1992	7	з				-1	9.			<u>*</u>	USA	DAYTONA BEACH, FL		-	6.00				
1994	1	. 4				1	. 9				USA	COREA HARBOR, MAINE	44,400	-67.978	1.50	1			-
2000	1	26				4				<u>.</u>	PHILIPPINES	TAWI-TAWI, PHELIPPINES	5.100	120.150	20,00				

July 2011

Possible US Meteotsunamis

- Selected events in the NGDC Database
- Events are on the U.S. coasts
- Another to look at is 2008 Boothbay, Maine
- 1926 Maine Event (listed as landslide)

1944 – Probable hurricane 1957 – very small 1988 - ??? Wind wave

	NOAA NATIONAL GEOPHYSICAL																		⊙ s	earch NG	DC O	Searc	.h NOAA Go		
10AA > NESDIS > NGDC > Natural Hazards															priva	icy poli	y.								
		Tsunami Events Search - sorted by Date, Country																							
Tsu	Tsunami Events where Year $>=$ 1940 and (Cause for the Tsunami $\leq=$ 9 and Cause for the Tsunami $>=$ 9) and Country = USA																								
Viev	View parameter descriptions and access statistical information by clicking on column headings.																								
For	For additional information about the tsunami, runups, associated earthquake or volcanic eruption,																								
	click on the links in the Eartnquake mag, voicano, Addi Tsu Into, or Num. of Runups columns.																_								
					ļ	Tsunami Cause											Tsunami Parameters								
	Date					Earth-	Vol-	Addl Tsu		Tsunami Source Location				Max Water	Num. Mag		itude	Тян	su Warn	Deaths		Injuri	е		
Ye	ar M	lo Dy Hr Mn Sec		Sec	¥al	Code	Mag	cano	Info	Deposits	Country	Name	Latitude	Longitude	Height	ght Runups	Abe	Iida	Int	Status	Num	De	Num	5	
19	44	9 14	·			1	9			*		USA	NEW JERSEY COAST	38.933	-74.900		1								
19	47	1				-1	9			*		USA	HAWAII				<u>0</u>								
19	52	5 6				0	9			*		USA	LAKE HURON, MI	43.100	-82.400	1.52	<u>3</u>								
19	54	6 26				0	9			*		USA	MICHIGAN CITY, IN (LAKE MICHIGAN)	41.700	-86.883	3.00	<u>5</u>					8	1		
19	57 1	1 1	. 5	0		-1	9			*		USA	HAWAII			.10	<u>5</u>			-3.00					
19	88	4 30				-1	9			*		USA	S. CALIFORNIA				1								
19	92	7 3				-1	9			*		USA	DAYTONA BEACH, FL			6.00	4								
19	94	1 4				1	9			*		USA	COREA HARBOR, MAINE	44.400	-67.970	1.50	1								

Observational Networks and Data Sets

Sea Level

- Coastal tide gage
- Deep Ocean (DART)
- Pressure/Wind
 - Ocean buoys
 - Coastal network
- Vertical Sounding
- Satellite
- Historical Observations
- Bathymetry/Elevation

Sea Level - DART network

NOAA

Page 16

Sea Level - DART network

- <u>http://www.ngdc.noaa.gov/hazard/DARTDat</u>
 <u>a.shtml</u>
- OR NDBC
 - http://www.ndbc.noaa.gov/dart.shtml
- Ontact:
 - <u>Paul.whitmore@noaa.gov</u> will get with the correct person

NOAA

Sea Level – Coastal tide gage network

Sea Level – Coastal tide gage network

- <u>http://tidesandcurrents.noaa.gov/tsunami/</u>
- OR NGDC
 - http://www.ngdc.noaa.gov/hazard/tide.shtml
- Contact:
 - Allison Allen allison.allen@noaa.gov

Bathymetric/Elevation Data Sets

- <u>http://www.ngdc.noaa.gov/mgg/dem/demportal.html</u> -Discovery portal
- <u>http://www.ngdc.noaa.gov/mgg/inundation/tsunami/inunda</u> <u>tion.html</u> - Tsunami DEMs
- <u>http://www.ngdc.noaa.gov/mgg/bathymetry/relief.html</u> All bathy/topo data sets

Contact:

<u>Paul.whitmore@noaa.gov</u> – will get with the correct person

Marine Modeling

Develop, archive, and provide access to global, regional, and community level bathymetric-topographic digital elevation models (DEMs) and derived products

Select products include: 10-m coastal tsunami inundation DEMs, Coastal Relief Models (90m-30m) for the U.S., ETOPO1, and Great Lakes bathymetry

Weather buoys

- Pressure
- Wind
- Wave Height/Period
- Buoys operated by NDBC see data at <u>http://www.ndbc.noaa.gov/</u>
- Resolution details from Kathleen
- Kathleen.oneil@noaa.gov

Ground Stations

- Products
 - Pressure
 - Wind
- All observations systems available through <u>http://www.nws.noaa.gov/om/coop/wfo-rfcmap.htm</u>
- Resolution variable
- Data archive at <u>http://madis.noaa.gov</u>
 - Contains NWS, NOS, and many other sources
- Contact Paul Whitmore who will work with NWS HQ for specialist

Air pressure chart archives

• Historic pressure charts

- Sources Historic and recent NWS
- Archives National Climate Data Center
 www.ncdc.noaa.gov
- Contact Jay.Lawrimore@noaa.gov

Vertical sounding data

• U Wyoming site -<u>http://weather.uwyo.edu/upperair/soundi</u> <u>ng.html</u>

Others – National Climate Data Center

<u>www.ncdc.noaa.gov</u>

Best for the archived data

Contact – see previous slide

Meteorological Satellite Data

Sources:

- Polar Orbiting
- GOES
- Altimetry (JSON)
- Archives NCDC
 - See previous slides for NCDC info
- Contact NCDC slide

Successful Conclusion

- Boothbay
- Daytona Beach
- Define systems necessary to forecast
- Design procedures and protocols to forecast future events